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The rapldly lncreasing powsr demand has led to the preferred
use of large rotating wachlines because they have great advantages
from a technical as well as from an economic point of view.
Development progress in this well-established lndustrial art is
faced with large difficultles. Thus it is dilsadvantageous, for
example, In the cross sectlon of a disk of axlally uniform thilck-
negs with a small central hole, for the distribution of the
gtresses to be very uneven. The stressing of the Inner cross-
gectlional fibers is substantially larger than that of the outer
fibers; hence, in practice, a design may be loaded only to the
extent that its greatest stress remains under the sgtrain limit of
the materlal with an assured marglin; new methods must therefore be _
sought for obtaining a satisfactory stress egualization in the cross
gection of these disks where. in many cases, indispensable design
irregularities exist.

An analogous problem was solved a dscade ago by the Austrian
artillery officer Uchatlus. At that time, higher and higher
requirements were placed on ordnance; this same diffliculty occurred
in the use of thick-wall bronze barrels. The stress distribution
in the cross section was so uneven that of the entire cross section
only & small portion could be used. Uchatius increased the utili-
zgtlion of gun barrels through an Ingenious technological method in
which he manufactured the barrel with a smaller bore than the .

Itne abstract of the same title, accepted as a dissertation of
the author at the Darustaedt School of Technology (Reviewed by
Prof. Dr. -Ing. Blaess and Prof. Dr. Schlink) was pertormed
according to the suguestions and under the dirsction of Prof. Dr.
Schlink and cand. Ing. Willly Prager. I wish to exXxpress sincere
thanks at this point for thelr assistance. The work was concluded
in the swmamer of 1922.
*"Geschleuderte Umdrehungskorper im Gebiet bleibender
Deformation. Zeitschrift fur angewandte Mathematik und Mechanik,
Ingenieurwisesnschaftliche Forschungsarbeiten, Bd. 5, Heft L,
Aug. 1925, S. 281-293.
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desired caliber end then, in the cold condition, expanded the bore
to the deslired dimension with a steel punch. The fibers of the
inner croes section would therefore remain stretched with the
strain limit raised; simultaneously, however, the fibers of the
outer crogs section would be so elastically stretched that at
discharge a considerable leveling of the rather severe stress disg-
tribution would occur from the inner to the outer fibers. The
experience with the Uchatius ordnance was a good indication of the
technique that was In keeplng with the state of advancement at
that time.

As the work progressed, thils example appeared to show that
the load capaclty of rotating disks could be increased by gpinning
them at high rotative speeds thus producing a residual strain in
the fibers of the inner cross section. Similar investigations
were repeatedly started during the lasgt year. It must indeed be
recognized that no solution of the problem has been reached in
terms of what is known at present. In the first place, the
researchea of the ARG [NACA comment: Allgemeine Elektrische
Gesellschaft] (reference 1), which have developed noteworthy
results in many respects, are to be noted.

Stodole (reference 2) developed a strength calculation for
overspeeded diske®, In reference 2, still other comunications
are to be noted in comnection with this problem.

Since Uchatius, different investigations of problems similar
to those of thick-wa%led cannons have been encountered; for
example, those of Kruger (reference 3), which contain a compre-
hensglve bibliography both inside and outeside this sphere.

Above all, the work of Lasche (reference 1) has led to the
mathematical Investigatlon of the problem of overspeeded disks.

1. Tangential cross-sectional loading. - The sum of the

tangential stresses, whlch are produced by the centrifugsl forces
and are circumferentially uniform, should be designated as the

tangential stress loading
T = /;tdF (1)

(F)

2The cdncept of spinning or overspeeding shall herelnafter be
confined to the region .of permanent deformation.
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For an elementary mess in a rotating disk (fig. 1), the equi-
librium conditlon with respect to radial displacement can be
expressed as usual in the esquation

o(apx)
—?;;idxdzdcp+x%dxdzdcp

- Oy dx dz dop+ pef x® dx dz 4P= 0

where p denotes the specific mass of the material and ® denotes
the angular veloclty.

When the previous equation is Integrated across the entire
cross section F, an expression for the radlal equilibrium of
the d¢o portion of the disk is obtained. This equation is

3(opx) ' oT
aeop —&—-dxdz+dep x-é-i-dxdz

(F) (F)

-dm[/;tdxdz+wzd®fmzdxdz=0

(F) (¥)

The flrst two members vanlish within the limits of the cross
section according to the law of action apnd reaction, and tramsform
at the boundary of the cross section into the sum of the radial
components of the rim loads, which act on the sector do.

If the equation under conslideration is divided by d® and
the variation of u In consequence of the deformstion l1s
neglected, the followling expression 1s obtained:

L/]qi(..?irﬂdxdz+L[/:c%dxdz

(F) . (F)

+pwzfxzdF=fO‘tdF (2)

(F) (F)
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Accordingly, the tangential cross-sectional Loading of &
rotating disk is equal to the sum of the corresponding rim loading
and the centrifugal force.

The corresponding rim loading or centrifugal force is hereby
understood to be the sum of the radlal components of rim forces or
centrifugal loads, respectively, applied to the sector dp divided
by the angle do.

This formulation is only valid for uniform peripheral deforma-
tion conditions but it is also valid for any chosen stress-strain
relation of the material. :

2. Rotating rings. - As a simple case, the behavior of
rotating cylindrical bodies, which have so little thickness that
the tangentlal stresses can be assumed uniform over the entire
cross sectlon ard the radial siresses assumed negligible, will be
first Investigated. Axiomatlcally, all the loads and stresses
must be related to the dimensions of the deforming body because in
the region of permanent deformation those methods of calculation
as applied in elastlc theory, wnich coneider the original dimensions
of the body, would form an inadmissible source of error. With the
established hypotheses, the shape and the size of the ring cross
gection can also be dlsregarded and at each inestant only the
aforementlioned unit area that contains the center of gravity of
- the entire cross section need be considered. As a further simpli-

fication, the ringes should be freely rotated; thus, cylindricsal
rings not loaded with rim forces should be investigated.

Because taking the dimensions of the deforming body into
acoount at each lnstant is desired, the stress-strain relation of
the material should also be related to the deforming cross section,
thus the so-called true stresses are considered in their dependence
on the strain. The investigation will be particularly extended
for ductile materials, such as, steel, iron, copper, bronze, and
so forth. The stress-strain relation of these materials in the
region of permanent deformation can be expressed familiarly in ‘the
form

o7 = Le (3)

where O and € designate the true stress and unit strain,
respectively, and ¥ and ¢ deslgnate characteristic constants of
the. given materials, which can be determined easily from rupture
tests. Equatlon (35 can be obtained by simple curve fitting. In a
rupture diagram of the materlal (fig. 2, 0g curve}, the abscissa
corresponds (after appropriste determinetion of the socale) to the

872
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specific strain and the ordinate corresponds to the stress Og,,
which 1s based on the originel cross-sectlonal ares. If the varia-
tion of the density in consequence of the deformation 1s neglected,
the relation 0 =0y (1 +¢) exists between the stress based on
orlginal area and the true stress In the reglon of permanent defor-
mation. The curve of true stresses 1s obtained when the ordinates
of the @g curve are multiplied by (L +€). This procedure is

.cerried through only up to the horizontal branch of the o4 " ocurve

because &t this point the necking of the tensile specimen begins
where the use of the conversion made with the help of the measured
longitudinel strain loses all Justification. On the curve of the
true stresses, thls so-called necking point can be determined in
the customery manner in which the curve of true stresses ls first
l1aid out in the normal way beyond the expected necking point and
then the tangent point ls determined by a tangent drawn from the
abscisea point € = -1. (See fig. 2.)

A ring without rim loading could thus be rotated with such a
high peripheral velocity that the tangentlal stress or strain would
exceed the elastic limit of the material and the ring would remain
stretched in the tangential dlrection. The materlal 1s thereby
hardened and the strain in the ring would. come to equilibrium at
uniform angular velocity when thls conditlon exactly satlsfies the
requirements of equation (2). For the ring element under considera-
tion, which at any time possesses the cross-sectional area 1 and
the same radius of gyration as the entire deforming ring (£ig. 3),
this equation cen be written as follows:

o = uo® r? « pef r% (1 +¢€)? (4)

In this equation, ¢ 1s the average tangentlal stress, € the
specific tangential strain, r +the Increased, and rp the orlginal
radius of gyration of the entire ring sectlon.

Equations (3) and (4) thus describe the stress-strain history
of the rotating ring.

Whether the ring remains stable in the calculated equilibrium
condition or whether, under certain conditlone, deforms further
without increase in anguler veloclty 1s of greatest signiflcance.
Thue it 1s hypothesized that the ring exists in momentary equilibrium
at an angular velocity ® with resulting strain €, but that, In
spite of uniform anguler velocity (W = constant), the entire
circumference undergoes a small additlional straln de¢. This addi-
tional strain would increase the gtress in the materlal from ©
t0 O + 40 according to equation (3), as well as also Increasing
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the cross-sgctional tangentlal loading from pwz ro2 (1 + e)2 to

2
wP r? [+ ) +ad] = o® (145208 )

The addlitionsl strain, however, cannot take place as long as it
will harden the materlal more than the increase in tangential
loading; consequently, the strain cannot occur as long as the con-
dition

> 2 2de
o + 4o uu? r (l + T e

or with consideration of equation (4) that

405 _O
de 1+ €
2

is satisfied. Thils stipulation characterizes the regilon of stable
rotation in which a further deformation of the rotating ring cen be
evoked only by increasing the angulasr veloclty.

The critical point of a freely rotating ring will be
designated (0., €5, W) where

g'.g=4_ ’
e T+ e ()
2

In graphical representation, it 1s convenlently ascertained from
the true stress-strain curve (fig. 2) that the region of rota-
tional stabllity reaches from the beginning of the deformatlon to
the point where the subtengent amounts to 1 + ¢/2. This point can
be quickly dotermined graphically by trial and error; moreover, lts
coordinates can be calculated from equation (3) according to

1

. Op ='<2—7-!_—-i>7 (8)

1
€r = 2y - 1

and

(6a)

With the help of eguation (4), the assoclated values of W
end up =W rg (1 +€,) can now be established.

eL8
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In previous conslderations, 1t has been tacltly implied, through
use of equation (2), that the deformatlion of the ring is uniform in
the clrcumferentlel direction. If and how far this uniformity exists
or when a local deformatlon, a necking of the rotating ring, can set
in as a consequence of the nature of the loading remains to be
Investigated. The beginning of local deformation can therefore be
characterized in such a manner that a very short arc length x of
the ring is strained by ¢ + de; whereas the rest of the ring
remaing strained only by €. The addltional strain de€ of this
small arc length would increase the radius to the center of gravity
of all the cross sections of the ring and would therefore Iincrease
the tangentlal loading; simultaneously, however, the materiel of
the necking-arc element hardens In comparison with the rest of the
ring. The local deformation cen therefore arlse only In those cages

1f the unit of ares, reduced by ﬁ at the necked position

in splte of the hardenling caused by the assoclated deformation, is
smeller In load capaclty than the unlt of cross-sectlonal area of
the nonnecked ring segment, which is strained on.lg by €. The2

former tangential cross-sectional loading O = v r® = pOJz ro°(1 + €)2
through the necking of the arc length x 1is Increased to

e
2., 2 xde| 4 xde
TS li(l+e)+——z] C 1+ J

The load cepaclty of the necked ring element beccmes

1l +€ 4 €
(0+00) 75755 ge ® (0+,80) (1 - m)
The necking is therefore possihle only 1f the relations
xd € de
> - p——
c[l'*' 1 +e¢ rﬂ] (0'+do)(l l+€)

or

X ag 1 + €
nr > dc ¢ -~ 1

.are satisfied. In any case, these relations should be valld for
arbitrary small values of x and they must thus transform at the
beginning of local deformation into the limit condition

dogl+e _, _¢
de o 1 0
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Consequently, the freely rotating ring can be sustained only to

the point of beginning local deformation where %% = iff;Tﬁ hence

to the seme point where the conventional tensile specimen begins

necking.

3. Rotating disks. ~ A freely rotating disk of ductile material
will be Investigated next. In this case, equation (2) is

TzfctdF=i.Lmz fxzdF

(F) (F)

If the instantaneous radius to the center of gravity is
designated by ry; and the radius of gyration [NACA comment: About
the center of gravity of the section shown in fig. 5] by rp, then
the previous equation transforms to

P =pef F rs2 + po? 7 rp2 (7)

The instantaneous value of the tangential stress loading cen
therefore be considered as a functlion of the instantaneous
(deforming) cross section

T =f (F) (8)

In eny case, 1f equation (8) is to be determined analytically
obviously other variasbles such as € or its equivalent must be
used, that is, quantities that designate the true homogeneous
gpeclfic deformation of small cross-sectional elements. The
desired reletion T = f (F) would subsequently be obtained by
Integratlion over the entire cross section. Discussion of if and
how this expresslon 1s to be obtained analytically is desirable,
not agsuming but hypothesizing that elther the analytical expression
or the graphical representation (fig. 4) is already available. In
the at-rest condition, the disk should have the cross section Fq,
which must be assoclated with the value of T = 0 in eguation (8).

The following definitions are also introduced:

C' = w? P rs2 (9) -

c" = qu-F rp2 (9a)
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The expression of the dependence of T on W and F is to be
investigated lmmedlately. The customary hypothesis that the

material 1s incompressible dp = 0 yilelds the equation

ar
r T
sl 2
8L __z¢ 10
rgz Fy (10)

where subscripts 1 end 2 denote distinct assoclated values of rg
and F. From equations (9) and (10) directly follow

2
F {Fo Fo
o' = wo? Fo reo” g (?) =o' ¥ (11)

The subscript O dJdesignates values that relate to the original
measurements of the disk. With thls equation, the first part of the
dependence of T on ® and ¥ has been expressed. If, however,
C" 18 sought for the second part, the emergence of the radius of
gyratlon rp presents no small difficulty. The radius of gyration
is not only dependent upon the instanteaneous size of the cross
section but 1s also dependent upon the instantaneous form of the
cross sectlon. Thus, 1f the size and shape of the starting cross
section are known, the value of C" for a deforming sectlion can be
primarily determined through kmowledge of the successlon of shapes
that the cross section assumes., This knowledge 1s to be determined
possibly by elther basic detalled strength and deformation calcula-
tions or with the help of sultable spin tests. An attempt, however,
could sti1ll be made to take the possible variation of C" in its
dependence on ¥ into conslderation through determinatlon of the
probable upper and lower limits. For this purpose, a disk of
uniform thickness (fig. 5) will be oonsidered as & symbolic case.
Figure 5 exhibits the disk cross sectlon with initlal dimensions
rgos Pos hos Fo = bohp end also shows the deformed disk with

dimensions rg, b, h, F = bh. With these symbolic considerations,

the sssumption is further made that in the deformed condition, the
disk remains of axially uniform length. Then, however,

C"=L‘D2FI—1—-

Furthermore,
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With conelderation of equation (10)
rsoboho=rsbh and E-5=TT=§6—_b-

The case where the hypothetlical oross-sectional decrease occurs
with unchenging width bo/b = 1 ocan be considered as the lower
limit and the case where the deformetion occurs with unchanglng
height bo/b = FO/F can be consldered as the upper linmit. From
these relations it follows that

Cutn" = Co" (-F— ’ (12)
Fo
and
Cpax" = Co" %% (122)

are the lower and upper limits, respectively.

In order to provide an approximate plcture of the range of
limits expressed by percent, a calculation is made with the
following agsumed values:

Fo = 210 square hg = 70 centl- rgp = 35 centlmeters
centimeters meters
y = 0,00785 kilogrem per w = 314 F/Fy = 0.9

cublic centimeter
From thls asgsumption is determined:

Co' = 203,000 kilograms, Co" = 67,700 kilograme, and Cp' + Cp" =
270,700 kilograms. For the valus of T = C' + C", 274,910 kilo-
grems is obtalned as the lower limiting value from equations (11)
and (12) and 286,480 kilograms is obtained as the upper limiting
value from equations (11) and (12a). The range of limits thus

includes about 4% percent of the lowsr value of T. With the

deformation rate of F/Fo assumed as 0.9, thls range of limits
must be regarded as rather large. Closer bounds on the range of
limits could easily be attained In given cases on the basis of spin
tests or deformation calculations conducted for asimilar disks.
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This question will be pursued no further but instead equa-
tions (11) and (12) will be joined in & generalized form

T = Cg' Fo/F + Co" (F/F)¥ (13)

where the value of k may well be a function of the size of the
instentaneous cross section but in the course of the entire deforma-
tion k will, in all probability, lie between 1 and 3. Assoclated
velues of T, F, and © could then be determined first if, in
equation (8) as well as equation (13), the dependence on F is
graphically or mathematlcally exhibited.

It is desired to determine conveniently the instablility point
of & freely spinning disk from equation (13). Instead of the
sequence of calculatlions applied to the ring, those calcoulations
shall be used that consider the stipulation g%’ =0 or for
disks % = 0, as direct indications of instebility. If the
derivative of equation (13) 1s formed with respect to ¥ under
the assumptlons that g—;;n = 0 and k = constant +the resulting
equation ls

4T 2
-d-i‘- = - Co' FO/F + k 00“ 'F—ok" S - l/F (C' - kcn)
or
—-diTF 1/F [T - (x + 1) ¢"] (
= = - + C 14)

In one case, this equation ylelds the analytlical and in other
cases the graphical determination of the Instabllity point. Although
the instabillity polnt can be graphlcally obtained from the Inter-
section of the curves d4T/dF and - 1/F [T - (k + 1) ¢"], the
following procedure ylelds the result still more rapldly. The
curve of T - (k + 1) C" plotted against F is calculated and

- drewn. Next, the abscissa F 1s ascertalned with which the

associated tangent to the T ourve and the radius vector (drawn
from the origin of coordinstes) to the T - (k + 1) C" curve form
complimentary angles with the positive direction of the axis of
abscissas.,

It 1s also of Interest to determine the instabllity point of
a freely rotating ring in the coordinate system T, F obtained
from the relation

ar . . T 15
= (15)
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which implies that at the point referred to the subtangent is egual
to the ordinate. [NACA comment: Actually abscissa.] Egquation (14)
would also tramnsform to this same form if C" could be neglected
in comparison with C'. This neglect is obviously never permissible
because the neglect is allowable only for rings. If, however, easy
ascertaimment of the Instabllity point of a freely rotating disk
from equation (15) 1s desired, too large a value of F would be
obtained. The reglon of unstable rotation thus appears to begin
with a smaller deformation than that which 1s the case with the
correct determination according to equation (14). One hypothesis
naturally contains this last assertion, namely, that the value of

k 1s greater than -1. This assertion will always prove correct in
practice. If, in one way or another, curve T = f (F) 1s thus
graphically obtalned for a freely spinning disk, the lower limiting
value of the instability point could be determined most quickly
from equation (15).

As was already accomplished for rotating rings, 1t is possible
to show with similar reasoning that the necking of the disk first

begins at the point where %% = O therefore where the T curve

has a horlzontal tangent. This point of the T ocurve corre-
sponds to the necking point of the tenslile test because the
curve T = £ (F) 1s essentially similar to that of Og-

The instability point naturelly occurs with s smsller deforma-
tion 1n a spinning disk that 1s under the influence of centrifugel
rim loeding than In a freely rotating disk. This occurrence is
also valld for rings. The pursuance of these cages, although easy
to carry through for each, will be discontinued at this point.

4. Unstable region of rotation. - No congideration has been
made in the preceding discussion of the velocity of deformation.
Experimental measurement of the velocity of deformation 1s largely
related to the tensile test. The stress-strain curve of Ffigure a2,
as far as it considers a numerical eveluation, 1s intrinsicelly
related to the usual strain veloclty by rupture tests. The curve
could lle somewhat lower with an iInfinitely slow velocity of
deformation. Suitable investigations, however, have proved that
the effect of the usual rupture velocity in the material test for
steel and iron 1ls so unimportant that theses curves can be considered
as the stress-strain curve of the infinitely slow deformation with

little error.

For the sake of simplicity, & freely spinning ring ls
consldered. Subsequently, the ressoning can also be slgnificantly
applied to other sginning bodies. The ring attains the instebility
point Op = MDZ ro (1 + er)z with very little deformation velocity

a72
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at the angular velocity corresponding to the maximum point of the

w ocurve (fig. 2). The previous mathematical analysis has furnished
the proof that, 1f the angular veloclty remains unchanged, the ring
deforms further — In contrast to the stable deformetion range where
this would be possible only by increasing the revolutions. In
general, the angular velocity will also be considered as a varieble
in caloulatlon and as & function of time

©2 = £ (%) (18)

If the deformatlon proceeds with apprecieble and variable veloolty,
it must also be considered in relation to the time; for example,

€ =%y (t) (17)

If calculation according to the precedlng dlscussion is deslred,
conslderation of the so-called dynamic stress Og and not the
stress ¢ normally calculated from rupture tests would be
necessary. The dynamic stress is larger than the static strength
of the material. .The familliar characterlstlc of materlals, which
stipulates apparently higher deformation loads wilth increasing
velocity, proves that. The dynemic stress 1s not only dependent
upon the speclflic straln but 1s also dependent upon the instan-

taneous strain velocity %%
de

The tangentlal cross-sectional loading also lnvolves an addi-
tional force, which, evoked by the centrifugal acceleration of the
ring, opposes the centrifugal force, and for the unlt cross section
is equal to

2 2
d“r 2 dce
- Uy =—— = =~ Ur (l + e) —
dt2 0 a2

The dynamlc equllibrium conditlion of a freely spinning ring is
consequently

d2¢
oq = 0% 12 (1 + €)% - prg? (1 + €) =
or

2
a a2¢
£z (e, a{-) = urg2 (1 +¢)2 £(%) - urg? (1 +¢) = (19)

3Presumably this term would usually be comparatlively small in
practical cases, which, however, will not be considered here.
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The relation C4 = f3 (e s g%) must be ascertalned for the

given material by means of dynamic rupture tests. Equation (19)
then enables either the calculation for given assumptlons of

€ = £5 (t), which thereby stipulates w2 = f£1 (t) or inversely and
Pinally for any desired assoclated values of €, W, and Cg3.

Investigations concerning dynamlc stresses are often conducted
for various materials. Iudwik (reference 4, pp. 44 to 53) ran tests
on tin wires and established the form of the velocity curve
(ordinate, dynamic stress; absclssa, effective strain velocity

an __de
i’ where dn = T+ ¢

strain € = constant.

) as logarithmic with uniform specific

Plank (reference 5) conducted dynamic rupture tests with low-
carbon steel. Simultaneous values of 0g, €, and %% could readily

be determined from hls measurements. Unfortunately, these measure-
ments were analyzed from another point of vliew and only the evalua-
tion, not the diagrams, were published. Plank maintained that the
dynamic stress In the elastic region of deformation; below a certain
velocity of deformatlon, progressed proportionately to the velocity
of deformation but inferred, however, possibly with consideration

of the results of Ludwik, that in the region of permanent deforua-
tlon thls relatlon can in no case be proportional. It is

recognized that if tensile specimens of the same material are
ruptured with distinct but in each case uniform deformation
velocitles, distinct stress-strain curves are obteined that, for
glven ebsclesas €, would possess higher ordinates O3 the greater
the deformation velocities. With certain assuaptlons, the ordinary
stress-straln curve may be considered as & datum curve, which
accordingly would lie at the lowest position. In general, it

cammot be predlicted if and how much the deformation 1imit of the
material, thus in one Instence the uniform strain end in the other
the rupture strain of the material, will be influenced by the
deformation velocity. The specific characteristice of the

materials are of accompanylng importancs.

Same stress-straln curves have been included in figure 6 that
correspond to the increesing but otherwise uniform strain velocities

Vo, Vi, V2, and vz, where v = %%, end moreover, the & curve

corresponding to vg, Op has been included. If the ring has
attained the instability point with the normally extremely small
stretch velocity vp and 1ts angular velocity remains unchanged
or increases or even, as will be shown, is decreased In a speclal

872
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manner, the stretch velocity increases continuously according to equa-
tion (19). The question arises as to if and how the stretch velocity
can be hest controlled at gll times.

The assumption is made that the ring attaina a specific .
strain €' after a certaln unlnown deforwation path in the unsteble
deformation region with an angular veloclty ®Wg,', e deforuwation
veloclity v', end a dynamic stress Og' (fig. 6). Obviously,
these four values should satisfy equation (19). If reduction or
even complete annulment of the deformation velocity is desired, it
is best accomplished by the sudden reduction of the angular velocity.
If, for example, the angular velocity is reduced from W®Wg' to «",
equations (3) and (4) result in a negative tangential “"overbalanced
force", which is only to be explained in that no further deformation
is thersefore possible. The deformation condition is transforuwed to
an elastic one, namely, through reduction of the stress in the ring
material to ¢ ", +that is, material the yleld point of which head
previously been raised to G' > O". The actual process differs
from this process because the centrifugal kinetic energy of the
ring material is not annulled by the sudden reduction of the
angular veloclity. In calculations, therefore, the second member
of the right side of equation (19) 1is to be made positive and the
deforuation veloclty and dynamic stress will diminish with a certain
retardation to O and to oY, respectively. This retardation and
the increass in €' caused thereby can well be dlsregarded in
practical cases. If the goal were only the reductlon of the strain
velocity, the anguler velocity would later be increased from w"
to ' (fig. 6), where the deformation would again begin with
veloclity increasing from O.

Thus 1t is to be observed whether through suitable variation
of the angular veloclty, which naturally corresponds to varying
the tangential cross-sectional load, the deformation velocity and
thereby the entire region of rotatlional instability can be
controlled. These delilberations clarify the meaning of the
angular-veloclty curve, which appertains to zero deformation
velocity in the unstable plastic-flow region. Thls curve speciflses
those values of ®W wlth the associated strain of the deforuing
ring that one must stay below Iin order that deformwation of the ring
be increased ln the unstable region of spinning.

It is guite obvlous that the descriptions of events or analyses
have complete validity for disks of arbitrary contour.

5. Necking rezion. - A disk tends toward local deformatlion in
the necking reglon of rotation. The procesa occurs independently
of the characteristics of the unstable region of rotation.
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If achlevement of commercial edvantages 1s attempted in
specified cases through plastic deformation, the limit of applica-
bility of the process is determined by the occurrence of necking.
One reason for investigating the process of rotational deformation
in the region of necking is the determination of if and how a
uniform deformation can be attained in the circumferential direc-
tion. Moreover, possibilities of such an attainment exist. It is
contemplated, for example, that a ring will be spun on a right
circular cone, the external surface of which is filnely grooved in
the axial direction. If the ring material is quite soft and
ductile, the grooves would be loosened somewhat at the inner
gurface with the attalnment of the netking point. Before spinning,
however, the same effect could be produced by o pressing the
ring on the cone that the tangential surface friction, iIncreased
by this means, would set a certain obstruction in the way of the
beginning of local deformation. Similar externally affected
mechanical expedlents could well be varlously applied. In other
cases, there are materlals for which a suitable deformation
velocity Influences the course of the tensille test in such a
manner that the test bar 1s allowed to stretch uniformly in other
necking regions along its entire length. There are familiar
materials, the internal frictional resistence of which is strongly
augmented by Increasing deformation veloclty and that, moreover,
In consequence of cold deformation, are hardened very little or
not at all (reference 4, p. 40). These materials to which
presumably steel and iron are also to be added at certain
incandescent temperatures could thus be uniformly deformed even
in the necking reglon of spinning with appropriate deformation
velocities,

In order to understand correctly the spin process in the
region of necking, & prelimlnary statement should be made about
the necking region in an ordinary temsile test. In regard to
this situation, 1t should be recalled that figure 2, where the
stresp-straln curve was Introduced only in the stable and unstable
regions and therefore up to the necking point, is iIn contrast with
figure 4 where the path of the tangential stress loading in the
reglon of necking has also been characterized. The continuation
of the curve would thereby ordinarily be determined by plotting
the instantaneous tensile load on the necking speclmen and calcu-
lating the assoclated specific strain from the messured contrac-
tion of the cross section. This method, however, arouses many
questions. The stress-strain curve of the tensile test corresponds
in its path up to the necking point (the effect of the grip is
neglected) to a unilaxial stress condition. This characteristic
1s of great Importance and it would be desirable if it also
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characterized the path of the curve in the necking region. However,
the exterior surface of the necked portion of the bar, which is free
from surface forces, is conically bounded and consequently large
radial components Gy must appear in addition %o the stress
component O parallel to the axis (fig. 7), 80 long as the cross-
contraction coefficient of the material is not infinitely largs.

For example, wlth soft, low-carbon steel, values of cr/b over
0.3 are ascertalned. These values, however, evoke a triaxial stress
distribution in the necked test bar, the neglect of which is hardly
permigsible. The radiel stresses stipulate an essentially uneven
distribution of axlial stresses over the cross section. From this
distrivution, it 18 evident that individual circular strips of the
necking sectlon have undergone different specific strains. Thus
the posslbility exists that the earlier cross sections, except for
the section at rupture, also may not be plane and must be
calculated according to the significant shear stresses. The
specific strain stipulated by the contraction of the rupture section
is & relatlively fictitious value over the entire rupture section in
every case and, in reality, can be correlated for only & smell,
undetermined, cross-sectional ring strip the same as the
true fracture stresses, which are obtained in the usual manner.
That both of these values are assoclated wlth the same ring strip
appears to be, in general, of the hlghest improbability. Iun
reference to this condltion, no notice will be taken of thse
metallographlic consequences; they already fall outside the scope
of this work. As long as the "static" and "dynamic" stress-strain
curves for the necklng reglon of the tenslle test are not
agcertalned with undisputeble accuracy for a "necking-free" deforma-~
tion path, the deformation due to rotation in the necking region
can be only qualitatively followed for rings.

The case of spinning In the necking range, in which the
uniform deformation in the circumferentlal direction 1s effected
through externally used mechanical methods will not be exemlined any
closer. That which has been sald for the unstable region remains
entirely valld for this case. The situation is different 1f
ed justment of the uniformity of the deformatlon by means of sultable
deformation velocitles is desired. 1In these cases there 1ls, in
general, a critical deformation velocity for each deformatlon
gradient that cannot be reduced without the body beginning to neck;
these deformation velocities can he ascertained through suitable
tests. Thus, as in the unstable region of eplinning, the deforma-
tion velocity way not be arbitrarily reduced but with 1ts lowered
lumit carefully regarded, s region equlvalent to & zone of positive
danger must be passed over in all possible haste, with the
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iniatlion as well as with the interruption of deformation. In other
respects, everything that was developed for the unstsble range of
rotation 1ls also valld for this case.

In this respect, 1t 1s desired to present a rigorous interpre-
tatlon of the necking branch of the tangentlal-stress-loading curve
characterized in flgure 4. Thils branch exhlblts those values of
the tangentlal cross-sectional losding that muset be reduced in order
to transform the deformatlion state of the disk, which previously
had been arbitrarlly deformed without necklng to the subject cross
section, to an elastlc state; that ls, the plastic deformation 1s
thereby increased. At least, the same tangential loadinge must be
uged when repeated introduction of plastic deformation 1s desired.

The equivalent interpretation for rings In the necking reglon
would have the extrapolation, which was not drawn in, of the true
stress curve, which, as already said, must correspond to the path
of an imaginary necklng-free tensile test with very little straln

velocity.

In addition, an lmportant situatlon will be emphasized at this
point. In all the reasoning concerning the deformastion due to
rotation In the necking reglon, certaln assumptions are implied,
namely, that the use of a deformation velocity corresponding to a
uniform deformation is really possible. Thils assumption could break
down under conditions such that these deformatlon wvelocltles evoke
a premature fracture that could completely exclude, or signif-
lcantly limit, this reglion of deformatiomn. Neturally, this
possibility must be investigated for indivlidual materlals case by
cagse and also the possibility must be Investigated of whether the
danger zone of deformation velocities can be passed through so
quickly with the initiation or interruption of deformation that
practically no further necklng ocours.

6. Technologicai conslderations. - Rotationé in the range qf

permanent deformation could, for example, serve the exclusive

purpose of fabrication. Plastic materials would come Into consldera-
tion, which principally or preponderantly could hardly be said to
have a deformation limit in the usual sense.

4The autofrettage of gun berrels (reference 3, p. 282) proceeds
with similar phencmens. However, the length of the mathematlical
treatment would be halved. The subsequent expositions are also
naturally valid for thies closely related problem.
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A ring of purely plastic material, which does not strain-
herden ln consequence of the permenent deformation, is considered.
The path of the tangential stress load in the F-T diagram will be
characterized by a stralight line through the origin of coordinates
(Tpl line in fig. 4). In addition, plastic materials tend toward
Inclpient necking with slowly applled tensile stress. This charac-
teristlic is also expressed by the T, line, in which the
famlllar characteristlic of the deformation path in the necking

reglion %> 0 of the Tp1 1line is satisfied by a constant value.

That which has already been sald for the necking reglon is there-
fore valid in the seame sense for plastic materials through which
the correct interpretation of the Tpj 1line is also given. In
practice, the forming of rings or other bodies of revolution has an
essential role. Only analogous hot-forged, structural elements
are contemplated. The earller deliberations concerning the necking
region arise quite importantly wilth respect to the spln forming of
plastic materials.

Ductile materials, which harden with cold deformation, extend,
in general, through all three deformation reglons. In contrast to
materials of perfect plasticity, sultable consideration must be
glven to the permissible deformation limit of these materials. In
eny case 1t should be emphasized that, so far as the forming of
ductile materlals by spinning exclusively is consldered, the
deformation limlt cen be extended as deslred by repeasted annealing.

The spin-working must be considered, on the other hend, in the
cold hardening of materials. In this respect, spin-working is only
gpeclally suited to ductile materilals, the strain limlt of which
can be substantially raised by cold-working. Only copper and the
austenitic steels are contemplated as examples. In this case,
the questlon of the permisslble degree of deformation first arises.
The rupture strength forms the upper limit of every cold-work
process and simultaneously coincides with the highest value of the
cold-strengthening. In practice, the danger of rupture can hardly
form the immediate limit of spin-working. Whenever the rupture
point also coincides with the maxXimum raising of the strain limit,
many other characterlstic qualities, such as the magnitude of the
strain, the contraction, and the notch toughness, come into
conalderation In addition to the tensile strength in evaluation
for design applications. These characteristics of the material
are in a certain sense inverse functions of the strain limit in
that they increase or decrease at the sacrifice or utlilization of
the strain limit, respectlvely. In each case, Increase of the
tensile strength must be correctly adjusted in conslderation of the
practically permissible reduction in ductility. The ductillty
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becomes zero at the lnstant of fracture. Under cexrtalin circumstances
there 1is stlll another phenomenon, namely aglng, to be considered in
connection with the ductility characteristic. Aging exists in that
ductlle materials, which already have had the yield point raised by
cold deformation, have the yield polnt further slowly raisged by a
stress-free recrystellization [ NACA comment: Carbide precipitation]
at the cost of the ductility exlsting immediately after the cold-
straining. Reference is only made to the work of F. Korber and

A. Dreyer (reference 8), which contains a large bibliography.

Aging results in the range of validity and the obJject of a strenglh
and deformetion calculation for each method of cold-woriing, being
limited to the duration of the aging and the determinatlion of the
necessary force required, respectlively. The later strength charac-
teristic of the material, which for its moderately worked apnlica-
tions 18 alone decisive, could then he establlished only through
sultable Individual aging tests.

Taken basically, the prelimlnary calculation of a spin process
under certein conditions 1s rather unnecessary. If, for example,
a disk of ductile material is spun, the singular polnt of equa-
tion (7) in the stable region can easily be calculated or determined
from assoclated data on the angular velocity, the slze, and shape
of the oross section, and the rim loading. The unetable deformation
reglon is to be observed through the incrsase In deformation velocity
with constant angular velocity. The deformation velocity would be
controlled with familiar means, the continuation of the curve In the
ungtable flow region also determined, and the stated measurementa
acconpllished with repeated stopping and starting of ithe defoxrmation.
Insofar as there is an especial interest In it, the instability
point can afterwards be accurately ascertained on the baslis of the
curve obtained In this manner.

In conclusion it is mentioned that, in cases where cold
hardening 1s the object of splnning, the consideration and practical
uge of the slmultaneous deformation would be an obvious matter.

If and for what purpose and with what manner of materials the
spinning or overpressing can be advantageously applied as & method
of fabricatlon posslibly willl be declded by the future.

Transleted by Arthur G. Holms
National Advisory Committee
for Aeronautics.
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Flgure 2, ~ Rotating ring in region of permanent deformation.
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Figure 3. - Rotating ring before and after stretching.
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Figure 5. - Rotating disks before and after permanent
deformation.
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Figure 6, - Rotating rings 1in unstable region of rotatlion.
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Figure 7. ~ Necked tensile specimen.
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